Mostrando postagens com marcador pressão. Mostrar todas as postagens
Mostrando postagens com marcador pressão. Mostrar todas as postagens

sexta-feira, 30 de setembro de 2011

PRESSÃO


Definimos Pressão, como o resultado  da aplicação de uma força a que um objeto está sujeito dividida pela área da superfície sobre a qual a força age, ou seja:

Pressão = Força  / Area

E Força? O que é?

Definimos força, como a causa de qualquer modificação no estado de um corpo, podendo causar sua deformação ou alteração do estado de movimento, tirando o corpo do repouso ou do movimento retilíneo uniforme. A força também pode causar deformação e movimento de uma só vez.


Um tipo de força com a qual todos estão familiarizados é o peso. É a quantidade de força que a Terra exerce sobre você.

Há dois pontos interessantes sobre essa força:

Ela o puxa para baixo, ou, mais precisamente, em direção ao centro da Terra;

Ela é proporcional à sua massa. Se você tem mais massa, a Terra exerce uma força maior sobre você.

Quando você sobe em uma balança, você exerce força sobre ela. A força que você aplica comprime uma mola que move uma agulha. Quando você atira uma bola de vôlei, aplica uma força sobre ela, que a faz acelerar. Um motor de aeroplano cria uma força que empurra o avião pelo ar.

Força provoca aceleração. Se você aplicar força em um carrinho de brinquedo (empurrando-o com a mão), ele se movimentará, quanto maior a força que você aplicar a um objeto, maior o grau de aceleração e quanto mais massa tiver o objeto, menor o grau de aceleração. A Segunda Lei de Newton é normalmente resumida em uma equação:

 a = F/m, ou F = ma (Força = Massa x Aceleração)



Para homenagear o feito de Newton, a unidade padrão de força no sistema SI (Sistema Internacional), recebeu o nome de Newton.

Um Newton (N) de força é suficiente para acelerar 1 quilograma (kg) de massa na taxa de 1 metro por segundo ao quadrado (m/s2).

De fato, é assim que força e massa são definidas. Um quilograma é a quantidade de massa que 1 N de força acelera a uma taxa de 1 m/s2.

 A Terra exerce uma força para acelerar objetos que caem à taxa de 9,8 m/s2,. Nas equações, esta taxa é referida como g. Se você soltar algo da beira de um penhasco, em cada segundo de queda o objeto vai ser acelerado em 9,8 m/s. Assim, se cair durante cinco segundos, vai atingir a velocidade de 49 m/s. É um grau de aceleração bastante rápido.

Se um carro acelerar dessa forma, atingirá cerca de 100 km/h em menos de três segundos.

Peso

O peso é a força gravitacional sofrida por um corpo na vizinhança de um planeta ou de outro corpo celeste de massa significativa. Enquanto força, o peso é uma grandeza vetorial. Portanto, apresenta intensidade, direção e sentido.

Para corpos próximos da Terra, a direção é a linha que passa pelo objeto e pelo centro da Terra. O sentido é aquele que aponta para o centro da Terra.

Matematicamente, ele pode ser descrito como o produto entre massa e a aceleração da gravidade local:
 

Unidades

A força (o peso) é medida comumente em quilograma-força (kgf),

Pronto, estamos Nivelados, agora vamos atentar para alguns itens do nosso cotidiano.


1 – FUNDAÇÃO DE EDIFICIOS

 
Os pilares de edifícios são terminados por uma fundação denominada “Sapata”, a função como vimos é distribuir em uma maior área o peso concentrado no pilar, assim a reação do terreno, é reduzida, o que garante que o solo possa manter o edifício estável. Assim uma carga de 10 Toneladas, ou 10.000 Kg, quando aplicada no solo pelo pilar de 30x30 (900 cm²), irá exigir um solo com uma resistência de: 10.000 Kg/900 cm² = 11 Kg/cm²; Para minimizar este valor utiliza-se uma sapata convenientemente dimensionada. Assim com uma área de sapata por exemplo de 1,44 m² (1,20 x 1,20), teremos necessidade de reação do solo de apenas: 10.000 Kg / 14400 cm² = 0,69 Kg/cm²

 2 – RESERVATÓRIOS APOIADOS

Um reservatório circular de 100 m³ (100.000 l) com diâmetro de 6,70 m, e altura de 3,30 m, possui um peso próprio de 6,5 Ton. (6.500 Kg), quando construído em chapa metálica. Ao acrescentarmos um volume de 100.000 l de água estamos com uma unidade de 106.500 Kg, distribuídos em uma área de 35,25 m², portanto o solo deverá reagir com uma resistência superior a: 106.500 Kg/352.500 cm² = 0,30 Kg/cm² ou seja baixa resistência para os solos mais comuns em Mato Grosso.
 A técnica construtiva recomendada é a de retirada do material superficial, compactação com rachão, e cascalho, regularização com concreto magro, e assentamento.

Quando em alguns projetos agrega-se uma estrutura de concreto como base, acrescenta-se ao peso do conjunto, reservatório + água, uma carga decorrente desta peça, que irá exigir uma maior resistência do solo, assim esta peça estrutural é desnecessária em construção de reservatórios apoiados.
3 – COMPORTAS DE FUNDO DE BARRAGEM E DECANTADORES
Uma comporta projetada para ser instalada no fundo de um decantador e de barragens, está sujeita a uma força proporcional a profundidade de sua instalação. Assim em um montante de barragem com altura da lamina dágua de 20,00 m, uma comporta de secção quadrada igual a 1,0 m² (1,0 x 1,0), estará sob o efeito de uma pressão correspondente a:
Pressão = carga liquida sobre a comporta = 20 mca (metros de coluna d’água) = 2 Kg/cm²
Logo: Pressão = Força / Área.....A força que irá atuar empurrando a comporta contra a sua sede, é de:
Força = Pressão x superfície
Força = 2 Kg / cm² x 1,0 m²
Força = 2 Kg/cm² x 10.000 cm²
Força = 20.000 Kg =  20 Toneladas
 Portanto deve ser projetado um sistema de abertura e fechamento compatível com esta força......
 Esta é uma situação semelhante ao carro que cai em um lago:
A situação é simples:
 Um carro afunda no rio;
A altura da água sobre o carro é de 1,0 m (super raso)
A porta do carro tem uma area de 1,0 m²
 Qual a força que a vitima deve fazer para abrir o carro?
 Simples: A pressão exercida pela água sobre a porta é de 1,0 mca ou 0,1 Kg/cm².
 Força da Água comprimindo a porta sobre a sua sede = Pressão x superfície
Força = 0,1 Kg/cm² x 1,0 m²
Força = 0,1 Kg/cm² x 10.000 cm²
Força = 1.000 Kg = 1 Tonelada
 Ou seja, nenhum ser humano abre esta porta.

 4 – FORÇA DE ARRANQUE DE CURVAS, e CAPs, EM INSTALAÇÕES HIDRÁULICAS


Em uma tubulação  de 400 mm, conduzindo água sob uma pressão de 100 mca (10Kg/cm²), exerce que força de expulsão de curvas e Caps?
Força da Água comprimindo a parede do Cap = Pressão x superfície
Um Cap de 400 mm possui uma área de: 1.600 cm²
Logo a força a que o bloco de ancoragem de opor é de:
Força = 100 Kg/cm² x 1.600 cm²
Força = 160.000 Kg = 160 Ton
 Não é qualquer bloquinho.......................


sexta-feira, 28 de maio de 2010

TELEMETRIA PARTE 2

TELEMETRIA – Parte 2 - Vazão

Operar um sistema de Abastecimento de Água ou de Esgotamento Sanitário implica em conhecer todas as variáveis do processo, com destaque para:

Vazão Captada: Qual o volume de Água bruta está sendo retirado do manancial?

Vazão de água distribuída: Qual o volume está sendo disponibilizado para o consumo?

Vazão de Água Faturada: Qual o volume está sendo cobrado dos clientes?

Regra geral os projetos não contemplam estes aspectos operacionais, em decorrência da ausência de informações, e ou por necessidade de redução de custos na implantação do empreendimento, além da não exigência, pelos órgãos financiadores, e ou operadores. A conseqüência é uma operação no “escuro”, é como ter uma fábrica de Cerveja e refrigerante e não saber qual o volume de produção, de distribuição e venda, caminho fatal para a falência. Em sistema de abastecimento de água e esgotamento sanitário, conhecer as variáveis relativas a volume tornou-se bastante simples e barata com o desenvolvimento de novas tecnologias, não sendo portanto cabível em pleno século 21, estar-mos operando com uma mão de obra desqualificada e com anotações fajutas, imprecisas, e aleatórias, em blocos de papel nas instalações de produção de água de tratada.

MEDIÇÃO DE VAZÃO CAPTADA NOS MANANCIAIS E TRATADA EM ETAS.

Para saber-mos as vazões instantâneas que estão chegando em nossa instalações, o sistema mais econômico é a calha parshall, que deve ser calibrada com uma ferramenta denominada de “ Pitometria” , ou ainda por métodos tradicionais como o de volumes em reservatórios. Estando a calha calibrada devemos instalar um medidor ultrassonicos, para registrar os valores instantâneos e acumulados; pronto, saímos do escuro e passamos a gerenciar nossa produção.


MEDIÇÃO DE VAZÃO DE ÁGUA DISTRIBUIDA.

Para saber-mos as vazões instantâneas que estão SAINDO de nossas instalações, o sistema mais econômico, é o medidor de inserção, que apesar de muito simples deve ser adquirido de empresas idôneas, e com referencia no mercado.

O medidor de inserção SeaMetrics, é de fácil instalação e calibração, baixo custo, e elevada precisão. Asssim com os dados de vazão processada na Eta e os dados de vazão de água distribuída, temos como administrar o volume de água que está sendo usado ou desperdiçado, no processo de tratamento, como lavagens de filtros, descargas de decantadores, e outros consumos, ou eventual fuga, em algum lugar do sistema. Portanto já estamos exercendo um processo de gerenciamento da nossa unidade de produção.

MEDIÇÃO DE VAZÃO DE ÁGUA CONSUMIDA

Saber o quanto estamos vendendo de nossa produção somente é possível com a medição individual em cada unidade de consumo. Hoje o mercado nacional dispõe de inúmeras marcas de micromedidores, além dos "importados chineses”. O processo de seleção deve ser criterioso, com um termo de referência bem elaborado e não somente a capacidade de vazão do medidor, “não estamos comprando bananinha”, é preferível não medir do que ter instalado um medidor de baixa qualidade.

Conhecendo o volume total de água faturada, comparo com o volume de água disponibilizada na rede, e tenho uma importante informação de gerenciamento, que é o quanto estou deixando de faturar, de quanto o meu faturamento está reduzido por ineficiência do meu sistema de micro medição, da minha rede com fugas, ou dos reservatórios com extravasamentos, etc.

Ainda não falamos de telemetria, e o sistema de Abastecimento de água pode ter um eficiente gerenciamento.

Quando tratamos de sistemas de pequeno porte tudo está resolvido, porém para médio e grande porte, é importante manter-mos os nossos dados sincronizados em uma central de gerenciamento, que irá em tempo real computar as vazões de produção, de distribuição por setores de abastecimento, e confrontar com os resultados das medições individuais processadas por coletores portáteis, assim ao final de cada ciclo de leitura teremos condições de avaliar em segundos como está comportando o setor de abastecimento, o que irá permitir subsidiar as equipes de apoio da manutenção, em pesquisas de vazamentos, e ou de investigações de consumo, com umas crítica, que irá avaliar situações onde ocorreu faturamento de volumes superior ao fornecido ao setor de abastecimento.

A transmissão dos dados do medidor ultrasonico, e do medidor de inserção é feito via rádio, para uma central, dotada de microcomputador que irá armazenar, gerenciar as informações e gerar relatórios para tomada de decisões.


TELEMETRIA – Parte 3 – Níveis e Pressão

Um dos maiores problemas enfrentados por aqueles que administram um sistema de abastecimento de água, é evitar o extravasamento de reservatórios, seguida da dificuldade, em se ter informações de como está abastecido determinado setor da cidade, sem que o usuário reclame..............A Empresa chega sempre após o usuário ter sofrido as agruras da falta d´agua. Atualmente porém as concessionárias, públicas ou privadas, de água e esgoto buscam cada vez mais a simplificação de seus processos e o aumento da eficiência operacional.
Nesse contexto, um dos maiores desafios é a escolha das tecnologias mais adequadas para o gerenciamento de suas instalações.
E em virtude da variedade de aplicações e diferenças operacionais entre os processos, nenhuma tecnologia individual é adequada para tudo. O setor de medição de nível vem apresentando diversas soluções técnicas que são atualizadas constantemente.
Algumas tecnologias foram abandonadas, outras aperfeiçoadas e novas tecnologias foram criadas.
Como resultado, a escolha da solução ideal envolve mais do que a simples identificação da função de um instrumento: medição de nível, fluxo em canal aberto ou monitoramento de manta de lodo. Assim neste texto propomos orientar aos projetistas, e concessionárias a selecionar equipamentos de medição de nível, e recomendar as soluções mais práticas para cada aplicação típica das instalações de tratamento de água potável e de esgoto.
Lembramos que entre as “tecnologias” abandonadas, inclui a que utilizava da variação de resistências em um cabo imerso em um reservatório, cuja condutividade do liquido permitia enviar uma tensão para um galvanômetro, remoto, interligado por LPs (Linhas privadas de telefone). Esta tecnologia foi muito utilizada pela antiga Sanemat, na década de oitenta, permitindo conhecer os níveis dos reservatórios Morro da Colina, e Bosque da Saúde, em uma central na Eta São Sebastião, o que tempos depois foi inviabilizado, em decorrência da precariedade das linhas telefônicas, .......a tecnologia evoluiu.
Atualmente o método mais eficaz, e econômico de medição de nível contínuo (proporcional) indica o nível no decorrer de todo o período de medição, é a utilização de sondas de níveis, que são de fácil instalação.


A transmissão da informação é feita via rádio, ou GSM (Global System for Mobile Communications) celular.



O resultado deste investimento em um sistema de abastecimento de água, é a garantia de uma supervisão constante nos centros de reservação, bem como garantia de credibilidade junto aos usuários, residentes na adjacência dos reservatórios.

Para controlar a pressão nas redes de distribuição, ou nas adutoras, devemos instalar um Sensor de Pressão, que incorporado a um transmissor GSM, garante a supervisão de diversos pontos estratégicos da rede, permitindo que toda ocorrência possa ser visualizada primeiramente pelo operador do sistema, que providencia reparos, antes que afete a vida dos usuários do serviço.

segunda-feira, 10 de maio de 2010

GOLPE DE ARIETE PARTE 2

CALCULANDO O VALOR DA PANCADA

Personagens:

São responsáveis pela intensidade do Golpe de Ariete, ou pela pancada causada pelo retorno da coluna liquida os seguintes elementos:

1. A Velocidade

a. Quando o liquido é impulsionado na tubulação, este está dotado de uma energia cinética, que depende de como foi projetado a instalação.
Em nosso exemplo vamos admitir que a tubulação seja em ferro Fundido de 300 mm de diâmetro, e que foi projetado uma velocidade de 2,5 m/s

2. Vazão

b. A Velocidade é função da vazão, ou seja, para bombear-mos uma quantidade de liquido em uma mesma tubulação, com secção constante, devemos variar a velocidade, sempre mantendo um dos princípios da Hidráulica que é representado pela equação da continuidade, ou seja, o produto da área do tubo pela velocidade que o liquido está sendo bombeado, resulta na vazão, assim:

Vazão (Q) = Área (S) x Velocidade (V)

Q = S x V sendo: Q (m³/s); S (m²); V (m/s)

Em nosso exemplo o tubo de diâmetro 300 mm possui uma área constante de 0,070686 m², e se o liquido está animado com uma velocidade de 2,5 m/s, concluímos que neste instante está sendo transportada uma vazão correspondente a:

Q = 0,070686 m² x 2,5 m/s.....Q = 0,176715 m³/s ou 176,715 l/s ou 636,174 m³/h.

Assim em determinada condição, é ilimitada a vazão que pode ser transportado por este tubo de 300 mm. Porém para uso prático, as velocidades de escoamento mais econômicas são aquelas compreendidas até o limite máximo de 3,0 m/s.

3. Pressão

Para vencer a resistência ao escoamento, faz-se necessário transportar o liquido sob pressão. Sendo que a pressão é justamente uma indicação da quantidade de resistência ao escoamento.

O que impede ou causa resistência ao escoamento do liquido?

• O destaque na resistência, é para a diferença de nível entre o liquido na fonte, e no lugar que deve ser transportado. (DN)

• O segundo zagueiro é causado pelo atrito entre o líquido e a parede interna do tubo, é chamado de perda de carga, perda de energia, perda por atrito. O atrito pode ocorrer ao longo do tubo, e também nas peças e conexões que compõem a tubulação como: válvulas, curvas, tês, etc. sendo que o somatório destas resistências é traduzida em unidades de pressão, geralmente em metros.
Para transportar o liquido do ponto A, ao ponto B, o projetista deve definir, a pressão de trabalho, porém durante o fenômeno do golpe de aríete, a pressão poderá atingir níveis indesejáveis, que poderão causar sérios danos ao conduto ou avarias nos dispositivos nele instalados. Danos como ruptura de tubulações por sobrepressão, avarias em bombas e válvulas, ou colapso de tubos devido a vácuo, etc. Em nosso exemplo vamos admitir que a nossa pressão de trabalho seja de 10 bar (10 Kg/cm² - 100 mca)

Voltando ao nosso exemplo onde estamos transportando um liquido com uma velocidade de 2,5 m/s, em um tubo de 300mm, estamos diante de um problema hidráulico, mas iremos utilizar os princípios da cinemática para saber-mos qual a distancia que o líquido conseguirá percorrer até atingir a velocidade zero. Vamos admitir um tempo de parada de 10 segundos (posteriormente vamos calcular este valor exato).

Na Cinemática temos que a velocidade de um corpo é igual ao quociente entre o espaço percorrido e a velocidade gasta neste espaço, ou seja;

V (m/s) = E (m) / T (s)........Logo: E = V x T
Assim o nosso liquido ira percorrer um espaço de 25 m até a sua parada total, e iniciar o seu movimento de volta para dar a PANCADA na bomba ou em uma válvula que fechou.
Já viu um pingo no chão? Gera uma grande explosão, pois o liquido é incompressível, e um pingo em um copo, gera uma onda, e a maré alta quando bate na amurada de uma avenida litorânea, possui um efeito de retorno devastador, pense agora em uma coluna de liquido caindo de uma altura de 25,00m confinado em um tubo de 300 mm?

O resultado é uma grande pancada, e a geração de uma onda de retorno com uma rapidez que denominamos de celeridade (a), ou seja, Celeridade é a velocidade com que a onda gerada pelo choque se desloca ao longo da tubulação. (é diferente da velocidade da água), é um verdadeiro tsunami gerado dentro do tubo. Em nosso exemplo nossa instalação está trabalhando com 10 bar, essa pancada irá gerar uma sobrepressão, muito maior que este valor, e temos que ter tubos, válvulas...para resistir a este acréscimo de pressão, e também mecanismos para evitar que esta pancada assuma valores muito grande que exigirão aumento de custos em nosso projeto.

4. Comprimento da Tubulação

O comprimento da tubulação, é de fundamental importância no cálculo do valor do choque. Vamos adotar em nosso exemplo, um L=4.000 m

Agora finalmente estamos aptos para calcular o valor da pancada, que nossa instalação vai levar quando o sistema parar.Na seqüência vamos cuidar para minimizar este golpe, e ou proteger nossa instalação.

Primeiro Objetivo: Calcular o valor da Pressão gerada pela pancada do retorno do líquido.

Método: Supersimplista

1 - Cálculo da velocidade de propagação da onda, após a pancada.

a = 9.900 / (48,3 + K x D/e) 1/2

Onde:

a = Celeridade da onda (m/s)
D = Diâmetro de tubo (m).......0,3 m
e = Espessura do tubo (m).......0,007 m
K = Coeficiente que leva em conta os módulos de elasticidade

Tubos de aço, k = 0,5.
Tubos de ferro fundido, k = 0,6.
Tubos plásticos, k = 18,0

Logo: a = 9.900 / (48,3 + 0,6 x (0,3 / 0,007))1/2

a = 1.150,74 m/s.........observe que é uma super velocidade com que a onda de choque se propaga.

2 - Tempo de parada da bomba.

O tempo T é o decorrido entre a interrupção de funcionamento do conjunto moto bomba, por interrupção de energia e ou por ação voluntária do operador, provocando um cessar da velocidade de circulação da água na tubulação, a qual diminui progressivamente, até atingir o valor zero, parada total, para iniciar o retorno.

Este tempo será determinado pela fórmula de E. Mendiluce que propõem a seguinte expressão para o cálculo do tempo de parada:

T = C + ( K . L . V ) / ( g . Hm)

Sendo:

T = Tempo de parada da bomba (seg.)
C e K = Coeficientes empíricos de ajuste
L = Comprimento da adutora ( m )
V = velocidade de fluxo (m/seg.)
G = aceleração da gravidade (9,81 m/seg2)
Hm = altura manométrica total (m)

O coeficiente C é função da reação entre a altura manométrica e o comprimento da tubulação sendo:

C = 1 se Hm / L <>
C = 0 se Hm / L > 0,40
C = 0,60 se Hm / L > 0,20 e <>
O Coeficiente K depende do comprimento da tubulação, e pode ser obtido a partir da tabela à seguir:
L < k="2,00" align="justify">L +-= 500.................K=1,75
500< k="1,50" align="justify">L+-=1.500................K=1,25
L> 1.500...................K=1,00

Logo o tempo T de parada decorrido entre o bloqueio de energia e a velocidade igual a zero é dado por:

T = 1 + (1 x 4.000 x 2,5) / ( 9,81 x 100)

T = 10,19 segundos

O comprimento crítico Lc, é a distancia que separa a Bomba do ponto de coincidência das formulas de Michaud y Allievi, é calculado pela fórmula de Michaud. Comparam-se os comprimentos L (Adutora) & Lc. Sendo Lc igual a:

Lc = (a x 15,52) / 2, onde:

a = 1.150,74 m
T = 10,19 s.

Então:

Lc = (1.150,74 x 10,19) / 2
Lc = 5.865,72 m

Cálculo da Sobrepressão (H)

Se H = 2xLxV / gxT

Caso contrario calculamos a sobrepressão pela fórmula de Allievi, onde:

H = a x V / g

Neste exemplo iremos calcular a sobrepressão, ou o golpe, pela expressão:

H = 2xLxV / g x T

H = 2 x 4.000 x 2,5 / 9,81 x 10,19

Logo; H = 200,07 mca
lembra-se de quanto era a nossa pressão de trabalho? Essa é uma pancada com sérias conseqüências.

Este valor representa a pressão no instante do golpe, causado pelo retorno do liquido, (É a componente da energia Cinética), porém deve ser acrescido da diferença de nível (componente da energia potencial), que ocorre no mesmo instante. Assim admitindo que a diferença de nível de nosso projeto seja de 60,00m teremos uma pressão total responsável pelo Golpe de ariete igual a:

Sobrepressão Total (Ht) = H + DN.........Ht = 260,07 mca ou 26,00 bar

Para ter-mos uma melhor visualização da magnitude desta pressão, vamos admitir que o retorno do liquido seja sob um cap (Tampão de 300 mm) cuja área já calculamos e é igual a 0,070686 m².
da Física sabemos que:

Pressão = Força / Superfície.......Logo a força exercida no cap no momento do golpe será:

F = P x S ou F = 26,00Kg/cm²x706,86cm²

F = 18.378,31 Kg ou 18,38 Ton.

Suficiente para provocar um grande estrago se não for evitada esta força.

Na seqüência: Evitando a Pancada Hidráulica, ou Golpe de ariete.

ÁGUA CONTAMINADA EM BARÃO DE MELGAÇO

  ÁGUA CONTAMINADA EM BARÃO DE MELGAÇO   A notícia foi estampada em diversos jornais, água contaminada em Barão de Melgaço   A CAUSA: ...